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C06 - The bus admittance matrix and non-

linear load flow models 
 

 
 
The first stage in a load flow analysis is the building of the one-line diagram of 

the studied EPS, for which the elements' electrical parameters are defined, and then the 
system loading, expressed through the active and reactive consumed and generated 
power measured at its buses, is needed. 

Load flow algorithms use subsequently the electrical parameters to build 
equivalent mathematical representations for all EPS elements (for instance, Г equivalent 
circuits are used for transformers, Π equivalent circuits are used for lines, and constant 
values are used for loads). 

Thus, for the one-line diagram depicted in Fig. 6.1 (a), the equivalent one-line 
electrical representation which uses Г and Π circuits is the one in Fig. 6.1 (b). 

 

 
 

(a) (b) 

Fig. 6.1 – The one line diagram and equivalent representation of a simple EPS 
 

 
In the diagram in Fig. 6.1 (a), loads are represented as currents 

iJ , and the 

transformer ratios are complex numbers. The common ground node 0 is the reference 
bus, and buses 1-4 are independent buses. 

Next, the bus shunt admittances are computed as sums of  shunt admittances of 
EPS elements connected to the bus (eq. 6.1). Applying this reduction, the equivalent 
electrical circuit will have only 4 series and 4 shunt branches, as seen in Fig. 6.2. In the 
circuit in Fig. 6.2, the following assumptions are made: 
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 on the series branches, currents flow from the smaller number order bus to the 
bigger number order bus, and voltages directions follow the direction of the 
current 

 on the shunt branches, currents flow to ground and voltages are directed towards 
the neutral (ground) bus. 

  

 
Fig. 6.2 – The final equivalent representation of the simple EPS 

 
The bus current and voltage vectors are written as: 
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For the circuit in Fig. 6.2, an incidence graph is attached, in which branches are 

oriented according to the currents flow (Fig. 6.3). If branches are numbered as in Fig. 
6.3, branch voltage drops and branch currents can be written in vector form as: 

 

 

 

  (6.3) 
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Fig. 6.3 – The EPS graph  

 
Using these notations, two topological equations (which involve state variables, 

i.e. voltages, which depend on EPS connectivity) can be written. 
If the incidence matrix, the matrix that encodes the connectivity between buses 

and branches is denoted by [A], the following equations can be written: 
 

     nJIA 


      (6.4), 

 
which is the first Kirchhoff law, describing the relation between branch and bus currents, 
and 

     UUA n

T
       (6.5) 

 
the connection between bus voltages and branch voltage drops. 
 

Matrix [A] has a number of rows equal to the number of independent buses in 
the EPS, and a number of columns equal to the number of EPS branches. Its elements, 

denoted by aij (where i is the row index, and j is the column index) can have the 
following values: 

 0, if branch j does not connect in bus i 

 +1 or -1 if branch j is directly connected in bus i, in positive or negative 
direction 

 +Nki sau –Nki if branch j is connected with bus i through the transformer 
ratio side of a transformer, in positive or negative direction, and directly 

(via impedance) connected to bus k. 
 
For the EPS graph in Fig. 3, the [A] matrix is written as: 
 
 

[A] = 

 1 2 3 4 5 6 7 8 

L1-0 L2-0 L3-0 L4-0 L1-2 L1-3 L2-4 L3-4 

N1 1 0 0 0 1 1 0 0 

N2 0 1 0 0 -1 0 1 0 

N3 0 0 1 0 0 –N13 0 1 

N4 0 0 0 1 0 0 –N24 -1 

 
A second type of equations that can be written for an EPS are electrical 

equations, which use also electrical parameters, in this case admittances. 
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On each branch, the voltage drop can be computed using the branch admittance 
and branch current. In matrix form, for the entire system, this can be written as: 
 

     UyI        (6.6) 

where 
 

   
3424131240302010

,,,,,,, yyyyyyyydiagy            (6.7) 
 

If we substitute [I]  using (6.7) and [U] using (6.5) in (6.4), we get: 
 

         nn

T
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     (6.8) 

 
If we denote in (6.8) 
 

       n
T
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,                                                        (6.9) 

  
equation (6.8) can be rewritten as 
 

     nnn JUY        (6.10) 

 

that gives the general linear load flow model, in which  nU   is the unknown or state 

variables vector, to be computed using  nJ   the load and  nY , the bus admittance 

matrix.  
 

The bus admittance matrix  nY  is a square matrix, with a number of rows equal 

to the number of EPS independent buses, and describes electrically and formally the EPS 

connectivity. Matrix  nY  can be computed with (6.9) or, alternately, in the following 

manner: 
 

(1) If the analyzed EPS does not have transformers,  nY  is a symmetrical matrix 

and its elements are computed as follows: 

 its main diagonal elements, Yii, have their value equal to the sum of 

branch admittances connected to bus i 

 the elements outside the main diagonal, Yij, have the value equal to the 

admittance of the branch connecting buses i and j, with minus sign. If no 

direct branch connection exists between buses i and j, this value is equal 
to 0. 

 
(2) If the EPS has ideal transformers: 

 the main diagonal elements, Yii, are computed as the sum of elements 
connected directly, with impedance, to bus i, and the sum of admittances 
connected through a ideal transformer ratio times the square of the 
transformer ratio: 
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where Li denotes the set of branches connected in bus i and Nki is the ratio of the 

transformer from branch k connected to bus i. If branch k is connected through 

impedance with bus i, then Nki=1. 
 

 the elements outside the main diagonal, Yij,  have values equal to the 

branch connected between buses i and j, with minus sign, times the 
transformer ratio. If the transformer ratios in the equivalent circuit is at 

side i, the complex transformer ratio is conjugated. 
 

kkijikkiij yNYyNY  *
   (6.12) 

 

If the transformer ratios are complex numbers, the bus admittance matrix  nY  is 

no longer symmetrical. 
 
For the EPS in Figures (6.1) - (6.3), the bus admittance matrix is written as: 
 

 nY
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Using the bus admittance matrix, a general mathematical model for the load flow 

problem can be written. 

In the equivalent electrical one-line circuit of an EPS with n independent buses, 
where branches are represented by quadrupoles, each bus together with its connections 
can be represented as in Fig. 6.4. 

For such a bus, the (6.10) equation can be rewritten as: 
 

niJUYUY i

n

ik
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    (6.13) 

where   
*

*

i

i
i

U

S
J         (6.14) 

 
From (6.13) and (6.14), the non-linear mathematical bus model is derived in two 

steps, in (6.15). 

 rewrite (6.13) in which the nodal current iJ  is replaced with the second 

term from (6.14) 

 rewrite separately the slack bus equation, and in the other equations the 
terms where the slack bus voltage appears are separated 
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Fig. 6.4 - The equivalent circuit associated to a generic i bus 
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In the (6.15) equations, the slack bus voltage Ue is constant, it has a real value, 

not complex, and it is considered as angle reference. PQPU NNN   is the entire set of 

consumer (PQ) and generator (PV) buses. 
The first (6.15) equation can be rewritten in compact, matrix form, as: 
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    (6.16) 

this writing form being useful in cases when the load flow algorithm processes 
the whole bus admittance matrix. 

After the state variables  
N

U  are computed from the first (6.15) equation, the 

second equation can be used in order to compute the active and reactive power injected 
at the slack bus. 

The (6.16) equations system it is not used in this form for large power systems. 
Alternatively, starting from eq. (6.13), equivalent mathematical models are determined, 
which express the bus current or power balance. For this purpose, algebraic and 
trigonometric representations are used for admittances and voltages: 
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(6.17) 

iU  ''' ii UjU   i
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 The bus power balance model 
Equations (6.13) and (6.14) can be rewritten as: 
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By using the algebraic representation for admittances and the trigonometric 

representation for voltages: 
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and separating the real and imaginary parts in (6.19), the following non/linear model is 
obtained: 
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This complicated equations system cannot be resolved analytically, numerical 

methods being used instead. The non-linear expression do not allow the use of direct 
methods, iterative methods being required. 

In order to solve the load flow model, the non-linear equations system, written 
fundamentally as 

 

f (x) = 0             (6.22) 
 

it is solved in the following manner: 

 an initial approximation of the sought solution is generated, x(0), and the iteration 
counter is set to 1: t = 1 

 at any step t, with the current approximation x(t), a new x(t+1) approximation is 
computed, which should be better than the previous 

 the iterative process continues until a sopping criterion is met 
 

The exact solution it is theoretically found only if an infinite number of iterations 
is performed. Thus, with a finite number of steps, the found solution will be only an 
approximation. 

The best known iterative load flow algorithms are the Gauss-Seidel method and 
the Newton-Raphson method. 


