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C07 - The Gauss-Seidel load flow method 
 

 
The Gauss-Seidel (GS) load flow method is one of the first developed for 

computer-aided analysis of EPS steady state, back in the 1950 years. Its simple, yet 
precise algorithm makes it usable on low performance computer configurations. This is 
why it is still included in today's EPS analysis software such as EDSA-Paladin or Power 
World Simulator, where it can be used standalone or as starting method for the Newton-
Raphson load flow algorithm. 

 
Its advantages are: 

 has a short and simple algorithm, easy to implement using any 
programming language 

 ensures convergence in some special cases where the Newton-Raphson 
algorithm fails, such as operating states close to instability, or when the 
initial approximation for the solution is chosen too far from the exact 
solution. 
 

Its disadvantages are: 

 requires a high number of iterations, which grows with the EPS size 

 it is considered that the precision of the results is somewhat lower 
compared with the Newton-Raphson method. 

 
 
The general mathematical model 
The Gauss-Seidel method for load flow studies is based on the method with the 

same name written for the mathematical problem of solving linear equations systems. In 
the following, the general mathematical model, and then the adaptation for load flow 
calculations will be presented. 

 

A n-sized (n equations, n unknown variables) linear equations system can be 
written as: 
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or, in matrix form: 
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   (7.2) 

 
or, in compact writing: 
 

][][][ bxA      (7.3) 

 
Matrix [A] can be separated into two matrices, as follows: 
 

][][][ PNA  ,     (7.4) 

 
which allows (7.3) to be rewritten as 

 

][][][][][ bxPxN      (7.5) 

 
Equation (7.5) allows the definition of the generic recurrence equation for any 

interation t as: 
 

][][][][][ 1 bxPxN tt  

    (7.6) 

 

Thus, the approximation from iteration (t+1) can be computed using the 

approximation from iteration (t) with: 
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   (7.7) 

 

Starting from an initial approximation [x]
0
, and using (7.7) in an iterative process, 

a chain of successive approximations [x]
1
, [x]

2
, [x]

3
, … can be computed, which, in 

certain scenarios, converges to the exact solution. 
 

Usually, matrices [N] and [P] from (7.4) are defined based on the standard 
decomposition 

 

][][][][ RDLA      (7.8) 

 

so that matrix [N], which in (7.7) needs the computation of its inverse, to be as simple as 
possible. 

In (7.8), [L] (left) is an lower triangular matrix (with the elements below the main 

diagonal taken from matrix [A]), [D] is a diagonal matrix, with the elements from the 

main diagonal equal to the main diagonal elements of matrix [A], while [R] (right) is an 

upper triangular matrix, with elements above the main diagonal taken from matrix [A]. 
 

For the Gauss-Seidel method, [N] and [P] are written as: 
 

][][][ LDN       and      ][][ RP      (7.9) 
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Thus, (7.6) can be rewritten as: 
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    (7.10) 

 
and, for a single unknown variable: 
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Example: 
Equation (7.11) is used to compute new approximations for the unknown 

variables in the following manner. Let's assume a 4 equations, 4 unknown variables 
equation system written as: 
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or, in matrix form: 
 



























































4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

b

b

b

b

x

x

x

x

aaaa

aaaa

aaaa

aaaa

 

 
For solving this equations system, an initial approximation for the solution must 

be given: ][][ )0(
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and so on, for a number of iterations, until a stopping criterion is met. 
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The modified Gauss-Seidel method uses and acceleration procedure which 

computes first the xi
t+1

 approximation with the standard (7.11) formula, to which then 
applies a correction written as: 
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where 1 and 2 are called acceleration factors. 
 

In order to ensure convergence, matrix [A] should be diagonally dominant, i.e. 
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The stopping criterion is chosen based on a qualitative principle (for instance, the 
deviation between two successive approximations of the solution falls under a specified 
threshold) or a quantitative principle (a given number of iterations are computed). 

 
 
 
The Gauss-Seidel method for load flow analysis 
In order to adapt the general GS method to the specific case of electrical 

networks, the general  nodal equation is used: 
 

][][][ nnn JUY        (7.14) 

 

in which [Yn] is the bus admittance matrix, [Un] is the bus voltages vector, the unknown 

variables that need to be computed, and [Jn] is the bus current injection vector. 
 

Using (7.14), the current Ji from a generic bus i  can be written as: 
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In practice, bus loads are usually known as active and reactive power, not as 
currents. The bus current can be written as: 
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Combining (7.15) and (7.16), the bus voltage Ui can be written as: 




















 



N

ik
k

kik

i

ii

ii
i UY

U

QjP

Y
U

1
*

1
         i = 1,…,N;  ie           (7.17) 

Taking into account (7.3), (7.11) and (7.14), (7.17) gives the iteration formula for 
the Gauss-Seidel method for load flow calculations: 
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To speed up convergence, acceleration factors can be used, as in (7.12). The 

modified Gauss-Seidel method applies corrections to voltages computed in the current 
iteration based on their values from the previous iteration and the deviation for two 
successive iterations: 
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The acceleration factor alpha is usually chosen in the [0, 2] range, and the 

recommended values are between 1.4 and 1.6. A sub-unit value of alpha leads usually to 
convergence slow down. 

 
As stopping criteria, one of the following can be used: 

 the deviation of the slack bus power injection computed in two 
successive iterations falls below a given threshold: 
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 the maximum deviation of bus voltages computed in two successive 
iterations falls below a given threshold: 
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 all deviations between bus voltages computed in two successive iterations 
fall below a given threshold: 
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The complete algorithm for the Gauss-Seidel method for EPS load flow analysis 

follows below. 
 

1. Provide the input (topology, electrical and load) parameters for the analyzed EPS 

2. Provide the initial approximation for the bus voltages Ui
0
, i=1..N, i ≠ e and initialize the iterations 

count(t=0); 

3. Compute the apparent power injection at the slack bus at the beginning of the iteration: 
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4. For the PV buses PU (i=1,…, N and i is a PV bus). 

4.1. Compute a corrected value for the bus voltage Ui
0
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4.2. Compute the bus reactive power: 
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4.3. Check if the computed reactive power falls in the min-max range defined for the bus: 

 if Qi
min
 Qi

0 
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,   bus i remains PV, and the corrected bus voltage is kept: Ui

0
= Ui

cor
. 

 if Qi
0 
 Qi
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, bus i becomes only for this iteration a PQ bus, for which Qi

0 
= Qi

min
, and 

the voltage correction is discarded, keeping the previous value Ui
0
. 

 if Qi
0 

> Qi
max

, bus i becomes only for this iteration a PQ bus, for which Qi
0 

= Qi
max

,  , and 

the voltage correction is discarded, keeping the previous value Ui
0
. 

5. Compute the bus voltage in this iteration: 
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6. Compute the apparent power injection at the slack bus at the end of the iteration: 
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7. Check the stopping criterion: 

 if |Se
final

 - Se
init

|  , the stopping threshold is reached and the iterative process stops (go to step 

8); 

 otherwise, go back to step 4, using as voltage approximations the voltages computed in this 

iteration (Ui
0
  Ui

1
) and the newly computed slack bus apparent power injection (Se

init
  

Se
final

); 

8. The final bus voltages are the ones computed in the last iteration Ui
1
, i = 1,…,N şi i  e. The same 

for the slack bus apparent power injection, Se
final

. 

9. Compute the load flow auxiliary values (branch power flows, branch losses, branch voltage drops, 

branch loadings etc) 

 
The branch power flows are computed with (7.23), using the annotations from 

Fig. 7.1 
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(usually, Yik = Yki, except transformers with complex ratio, for which Yik  Yki,). 

 

 
Fig. 7.1 - The PI quadrupole for computing power flows on a generic branch branch  i – k 
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The branch losses and voltage drops can be immediately computed with: 

kiikkiik SSSS                         (7.24) 
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When voltages in magnitude and angle at both ends and the bus admittance is 
known, the branch current is computed with: 
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