
 

 

 

 

 

 

 

C08 - The Newton-Raphson method 

 
 
 
8.1. Review 
In the matrix equation 

 

][][][ nnn JUY       (8.1) 

 
where: 

[Yn] – the bus admittance matrix 
[Un] – column vector of the complex voltages from the system’s buses   
[Jn] – column vector of the complex current injections (loads) at the system’s buses. 
n – number of independent buses in the system 

 
for solving the load flow problem, if all the bus current injections are known (the load 

pattern is known) and the bus admittance is computed (i.e. the physical structure of the system, 
which means connectivity, type and electrical parameters for all the branches, is fully known), the 
bus voltages can be computed directly, using the inverse of the [Yn] matrix. In this case, the 
equation system described by (8.1) is linear and direct load flow methods can be applied. 

However, in most cases, and especially for meshed systems, the bus loads are given as 
active and reactive powers, which are in a non-linear relation with the bus voltages. The load flow 
model thus becomes non-linear and it is solved applying iterative methods. 

 
Regardless of the applied method, a load flow analysis consists of several steps 

[Alexandrescu 97]: 

 
Input data acquisition 
The input data can be summarized into three categories: 
 
General data: number of independent buses in the system, number of branches in the system, the 
location of the slack bus, the computing precision sought. 
 
 
Bus data: the type of each bus in the system, with its known data. 
In the one-line diagram, the common ground connection of the system is chosen as 

reference bus, while all the other buses are considered as independent buses, and they are 

described using four basic parameters: the active power P; the reactive power Q; the voltage 

amplitude U and voltage angle θ. 
In load flow calculations, two of these values are known, while the other two are to be 

computed. Based on this criterion, a bus can be: 

 A  PQ type (consumer) bus, for which the active and reactive powers are known 



 A PV type (generator) bus for which the active power and voltage magnitude are known. 

For this type of bus, limit values for the reactive power are defined: Qmin≤ Q≤ Qmax 

 The slack bus, for which the magnitude and angle of the voltage are known, and the angle 
is often considered as 0, reference value for the entire system. 

 
It can be seen that, with these assumptions, solving directly the load flow by using eq. 

(8.1) is no longer possible, because the value of the current injection in the slack bus is not 
known. 
 

Branch data: branch type, (line, transformer, series reactances, shunt capacitors), connection buses and 
electrical parameters (resistance, reactance, conductance, susceptance), computed used manufacturer 
catalogue specifications and other system specifics (transformer tap and type of adjustment, line 
length, number of parallel branches or transformers) and equivalent model (with lumped 
parameters, with distributed parameters, choice of use of transversal parameters). 
 

Computation of the bus admittance matrix 
The bus admittance matrix [Yn] is a square matrix, with a size equal to the number of 

independent buses in the system.  If the analyzed system does not contain ideal transformers, the 
[Yn] matrix is symmetrical, and its elements are computed as follows: [Eremia 85]: 

 A diagonal element, Yii, is the sum of the admittances of the branches connected to the i 
bus. 

 A non-diagonal element, Yij, is the value of the admittance of the branch connected 
between buses i and j, taken with the minus sign. If there is no branch defined between 
the i and j buses, the value from the  matrix will be considered 0. 

 
If the system contains ideal transformers,  

 A diagonal element, Yii, is the sum of the admittances of the branches electrically 
connected to the i bus, and of the branches magnetically connected to the i bus, 
multiplied by the transformer’s turns ratio: 





iLk

kkiii yNY 2
      (8.2) 

 
where  Li is the multitude of branches connected to bus i, and  Nki is the turn ratio f the 
transformer from the k branch connected to bus i. If branch k is electrically connected 
to bus i, then Nki=1. 

 

 A diagonal element, Yii, is the sum of the admittances of the branches connected to the i 
bus, multiplied by the transformer’s turns ratio. If the magnetic connection is in bus i, 
then the complex conjugate of the transformer ratio is used: 

 

kkijikkiij yNYyNY  *
  (8.3) 

 
If the transformers have complex turn ratios, then the bus admittance matrix is no longer 

symmetrical. 
 

Solving the load flow 
The state variables are computed: bus voltage magnitudes and angles for the PQ buses, 

reactive power injections and bus voltage angles for the PV buses. 
 

 



 
Computation of the auxiliary variables of the load flow 

- Active and reactive branch power flows 

- Branch power losses 

- The active and reactive power injection at the slack bus. 

- Branch voltage drops 

- Branch current flows 

 

 
8.2. The Newton-Raphson load flow algorithm 
In its basic, analytical form, applied to any type of problem, the Newton-Raphson 

method is the equivalent of the Newton method for solving one-variable non-linear equations 
written as: 

0)( xf       (8.4) 

 
If the Taylor expansion near the current approximation of the solution xt is used, where 

only the terms up to the first order are kept, and the real solution is tt xxx * , then: 
 

ttttt xxfxfxxfxf  )()()()( '*     (8.5) 

 
*x being the solution of (8.4), (8.5) gives the correction tx which, applied to the current 

approximation tx , will lead to a new approximation, 1tx , which deviates from the solution 
*x because the non-linear element from the Taylor expansion were ignored. This means a 

linearization of the problem. 
 

)(

)(
'

1

t

t
tttt

xf

xf
xxxx      (8.6) 

 

In a graphic representation (Fig. 8.1), the )(' xf  derivative is the slope of the tangent to 

the  )(xfy   curve, in the current point. 

 

 

 
Fig. 8.1 – The Newton method for non/linear equations, graphic representation 
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For a n-sized equation system with n unknown variables, eq. (8.4) can be written as: 

 

0])([  x      (8.7) 

where 
T

nxxxx ]...[][ 21 vector of unknown variables, 
T

nfff ]...[ 21  vector of the functions which define the equations system, computed 

in point ][x .  

 
 (5) and (6) are then written as: 

 
ttttt xxJxxxx ][)]([)]([)][]([])([ *     (8.8) 

and 

)]([)]([][][][][ 11 tttttt xxJxxxx      (8.9) 
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])([ is a n-sized square matrix, the Jacobian matrix, where any 
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Using the Newton-Raphson method in load flow calculations requires writing the load 

flow equations in an (8.7) type equivalent form.  
 
Given a system with N independent buses, where bus e was designed as slack bus, the 

complex power associated to an i bus can be written as: 
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If the elements form the bus admittance matrix are written as ikikik BjGY  , and the 

bus voltages are written as ij

ii eUU


  (algebraic and polar form), the following expressions 

for the active an reactive power can be determined: 
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For given approximate values of the voltages iU  if all the buses in the systems are of PQ 

type, the Pi and Qi values computed with (8.12) will deviate from the real values, given as input 

data, imp

iP and imp

iQ  with the quantities 
iP , and 

iQ . If the accurate solution were to be found, 

iP , and 
iQ would be null. But, for approximations of the accurate solutions, they are not null. 

To compensate for the deviations, the voltage magnitudes and angles 
iU  and 

i , should be 

corrected,. The 
iP  and 

iQ  deviations can be written as: 
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For easing the following computations, the voltage magnitude corrections 
kU are 

replaced with 
kk UU , and expression (8.13) is rewritten as: 
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In matrix form, this is written as: 

 
 

Expressions (8.14) and (8.15) describe an equations systems with 2*(N-1) unknowns, the 

voltage magnitude ( kk UU ) and angle ( k ) correction. The terms denoted with H, J, L in N 

in (8.15) form the Jacobian matrix. If the system contains PV buses, the size of the Jacobian, and 
consequently of the equations system (8.15), will be reduced. For the PV buses, the lines 
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corresponding to the 
ikJ an 

ikL terms will not appear, the right side of the equations system will 

not contain the reactive power deviations 
iQ , and only the voltage angle deviations 

i  will be 

computed. 
 
The elements of the Jacobian matrix are computed as: 
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By solving the expression (8.14), the corrections for the voltage magnitudes and angles 

are computed and the current approximations of the state variables are updated: 
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The iterative process continues by recomputing the Jacobian matrix and new voltage 

magnitude and angle corrections until a stopping criterion is met. Such a criterion can be meeting 



the condition that, for two consecutive iterations, the deviation of the computed active and 
reactive bus power injections falls under a given value  

 
The Newton-Raphson method is widely used for solving load flow problems because of 

its advantages: 

 small number of iterations 

 high precision 
 

However, the method has some important drawbacks: 

 high computational effort per iteration, due to the recomputing of the Jacobian ant its 
inverse 

 convergence problems, when the initial approximation of the solution is too far from 
the solution or the problem is ill-conditioned 

 
To overcome these disadvantages, simplified variants of the Newton-Raphson method 

are used: 

 the decoupled Newton-Raphson method 

 the fast decoupled Newton-Raphson method 
 

However, while they offer a decrease in number of calculations per iteration, this 
advantage is impaired by the higher number of iterations to reach convergence and by the errors 
in final solution arising from the simplifying assumptions taken. 

The pseudocode for the Newton-Raphson algorithm is given in Box 1 [Gavrilaş 08]. 

Box 1 – The Newton-Raphson algorithm 

1. Provide the input data; 

2. Provide the initial approximation for the state variables 
)0(iU , i=1..N, i ≠ e and initialize the 

iterative process (it=0); 

3. For all PQ and PV buses: i=1..N, i ≠ e: 

3.1. Compute the bus active and reactive powers, 
iP  and 

iQ , with (5) 

3.2. Compute the active powers deviations i

imp

ii PPP   

3.3. For each PV bus i: 

3.3.1.1. If 
min

ii QQ  , temporarily make bus i a PQ bus, with 
min

i

imp

i QQ  and 

go to step 3.3.4; 

3.3.1.2. If 
max

ii QQ  , temporarily make bus i a PQ bus, with 
max

i

imp

i QQ   and 

go to step 3.3.4; 

3.3.1.3. If 
maxmin

iii QQQ  , go to step 3.5; 

3.3.1.4. Add a equation for the reactive power, for the new PQ bus and go to step 

3.4; 

3.4. Compute the active powers deviation i

imp

ii QQQ  ; 

3.5. Go to next bus i , go to step 3.1, until all buses are visited. 

4. The stopping criterion. If 

 pi
PUPQi

P )(max
,




and  Qi
PQi

Q )(max 


 , go to step 8; 

5. Compute the jacobian matrix, solve the (8) equations system, and find the corrections 

kk UU and k ; 

6. Compute the new approximation for the bus voltage magnitude and angle; 

7. Iterations count check: 

If it = ITmax, stop the algorithm with warning error 

If it < ITmax, proceed with a new iteration and go to step 3. 

8. With the found solution, compute branch power flows and other auxiliary load flow results. 



8.3. The decoupled Newton-Raphson method 
Based on the assumption that for most power systems, there is a low correlation between 

the pairs of components P-U and Q-θ, which is equivalent to small values for the UP  and 

Q  derivatives, which can be eliminated from the mathematical model. Thus, the N and J 

components of the Jacobian matrix are null, and the (13) expression is rewritten as: 
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This means the effective separation or decoupling of P-θ and Q-U, resulting in two 

distinct equations systems, each with N-1 equations and N-1 unknown variables (corrections for 

voltage magnitude and voltage angle respectively). The  Hik and Lik coefficients from (8.17) are 
computed using the complete expressions from the Newton-Raphson method. For a faster 

convergence, the P-θ equation system is solved first, finding the new voltage angle corrections 

i . With these, new Lik coefficients are computed and then the Q-U system from (8.17) is 

solved, finding the new
iU  voltage magnitude corrections. This allows speeding the time of 

calculation for an iteration, but this advantage is compensated by the higher number of iterations 
required for reaching convergence, compared with the full Newton-Raphson method. 

 

 
2.4. The fast decoupled Newton-Raphson method 
The (8.17) expressions can be further simplified if the following assumptions are 

considered:  
 

 0 ki  , because the angle difference between two neighboring buses is negligible. 

Thus, in (17): 
 

0)sin(  ki   1)cos(  ki   (8.18) 

 

 Gik << Bik – because the branch conductances are much smaller than the susceptance, 
thus     

Gik = 0      (8.19) 
 

 in the iiH  and iiL  coefficients from the Jacobian matrix, it is considered that iQ  << 
2

iii UB  , thus 

iQ  = 0       (8.20) 

 

With these assumptions, considering also the decoupling of P-θ and Q-U equations,  the 
H, N, L and J coefficients from the Jacobian matrix are computed as: 
 

2

iiiiiii UBLH   0 iiii JN  

(8.21) 
kiikikik UUBLH   0 ikik JN  



The 
ikB  coefficients are further simplified as follows: 

 in the  P-θ equations, from 
ikB  are eliminated all branches which may have a influence 

on the voltage levels (transformer taps) and on the reactive power flow (reactance coils or 

capacitor banks) and the bus voltage is considered with its rated value nkU , . From the 

remaining branches, the real components of the admittance (R and G) are also discarded. 

Thus, for the P-θ equations: 
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 in the Q-U, equations, all the branches which could affect the active power flows. Thus: 
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 With these simplifications, (8.17) is rewritten as: 
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In (8.24), the '

ikB  and ''

ikB  coefficients are constant, which means that the Jacobian matrix 

will remain unchanged during the iterative process, if PV buses are not temporarily changed to 

PQ buses. In this case, the number of iQ  equations changes and, only then, the Jacobian matrix 

must be recomputed. 

 

 

 
2.5. Per-unit values 
In electrical networks with two or more voltage levels, values as branch impedances or 

voltage values cannot be compared on a common reference. In this case, the per-unit system is 
often used. Converting absolute values into per-unit values is, basically, a normalization process, 
using a base value of choice.  

 

 valuebase

 valueabsolute
unit valueper        (8.25) 

 
The value of the numerators in expression (8.25) may be a complex number; however, 

the denominator (the base value) is a positive real number. 
The per-unit value is dimensionless. In the literature, as a convention a parameter for 

which its value is given as per-unit (p.u.), it will be affected by the symbol (*). 
In power systems there are four base quantities required to define a per-unit system. 

These are: power (S), voltage magnitude (U), current (I) and impedance (Z). For these, the known 
basic interdependences are defined: 

 



IZU   ; 
*

IUS       (8.26) 

 
Given two of them, all others can be defined using these two. Usually, the base voltage 

UB  and power SB are chosen. The voltage angle is dimensionless. Base current and impedance  
follow as: 

B

B

B
U

S
I  ,  

B

2

B
B

S

U
Z   or  

B

2

B

B

B
Z

1

U

S
Y      (8.27) 

As a general rule, the base power has a unique value at system level, while the base 
voltage is recomputed using the transformers’ ratio. 

The per-unit system is useful particularly when representing transformers. If as base value 
for voltages, the rated voltages of the transformer are chosen, then the ratio is no longer needed, 
because the voltages in p.u. are equal. 

 
Advantages of the per-unit system 

 Ohm’s Law is the same in the per-unit system: if IZU   and BBB IZU  , then  

 

...... upupup IZU        (8.28) 

 

 The three-phase and the single-phase base values of voltages and powers are related as: 
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 The impedance and current have the same values when computed using single-phase or 
three-phase values: 
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 The per-unit one phase and three-phase values are equal: 
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Base change 
There are cases when it is necessary to change the base value, for instance when a system 

contains transformers and, thus, more than one voltage areas, or when the transformers’ basic 
parameters are given in producers’ catalogues using different base values (absolute values, percent 
etc). In these situations, it is necessary to recompute the per-unit values of impedances or 
admittances. 

For the same absolute value of the impedance: 
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which gives: 
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The same applies for admittances.    

 

Modeling transformers in the per-unit system 
For the two-winding transformer, when isolated from the system, its per-unit parameters 

are computed using as base values the rated power 
nB SS  and one of the rated voltages 
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n2B UU   

Thus, the base impedances and admittances can be computed as: 
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The per-unit parameters of the transformer will be computed as: 
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If the rated voltages of the transformer are chosen as base voltages: 
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       (8.36) 

then the per-unit values of the parameters given by (8.35) are the same, regardless of the base 
voltage used, and, consequently, in the per-unit diagram, the ratio of the transformer is 
eliminated. 

In eq. (8.36), if N is expressed using the number of turns, the coefficient r has one of the 
values from Table 8.1. 



Table 8.1- The influence of the vector group of the transformer on the value of the transformer ratio used 

 for converting to the per-unit system 

r HV winding vector 

group 

 LV winding vector 

group 

1 Y Y 

1   

1 / 3   Y 

3  Y  

 
A basic convention for applying the conversion in per-unit values of a given 
system 
1. Build the one-line diagram of the system 
2. Choose a base value for the power (a multiple of 10 MVA or 10 kVA is 

recommended). 
3. Place the rated ratios of transformers on the one-line diagram. 
4. Identify the voltage areas of the system, based on the transformer winding voltages. 
5. Choose the base voltage in the first area (the rated voltage in the area is the 

recommended value). 
6. Compute the base voltages in the other areas, using the already known base voltages 

and transformer ratios. 
7. Compute the base impedance in each area. 
8. Compute the per-unit values of impedances, powers and voltages in each area. 
9. Build the one-line diagram in p.u. and eliminate the transformers. 
10. Run the analysis and reconvert the results in absolute values, if necessary. 

 
8.6. Example: Using a load flow Newton-Raphson algorithm for power system 
management 
In the following example, the Newton-Raphson load flow algorithm will be used on the 

IEEE 14-bus system [web pstca] for testing if an important line can be disconnected for 
maintenance reasons. The one-line diagram of the system is presented in Fig. 8.2. 

 
Fig. 8.2 – The one line diagram of the IEEE 14-bus system 



As input data, the load flow algorithm requires the branch parameters given in Table 8.2 
and Table 8.3. 
 

Table 8.2 - Bus parameters for the IEEE 14-bus system 

bus 
no. 

bys 
type 

initial bus 
voltage 

magnitude 
[p.u.] 

initial bus 
voltage 
angle 

[radians] 

consumed 
active 
power 
[MW] 

consumed 
reactive 
power 
[MVAr] 

generated 
active 
power 
[MW] 

generated 
reactive 
power 
[MVAr] 

max. 
reactive 

power limit 
[MVAr] 

min. 
reactive 

power limit 
[MVAr] 

1 slack 1.06 0 0 0 0 0 0 0 

2 PV 1.045 0 -21.7 -12.7 40 0 50 -40 

3 PV 1.01 0 -94.2 -19 0 0 40 0 

4 PQ 1 0 -47.8 3.9 0 0 0 0 

5 PQ 1 0 -7.6 -1.6 0 0 0 0 

6 PV 1.07 0 -11.2 -7 0 0 24 -6 

7 PQ 1 0 0 0 0 0 0 0 

8 PV 1.09 0 0 0 0 0 24 -6 

9 PQ 1 0 -29.5 -16.6 0 0 0 0 

10 PQ 1 0 -9 -5.8 0 0 0 0 

11 PQ 1 0 -3.5 -1.8 0 0 0 0 

12 PQ 1 0 -6.1 -1.6 0 0 0 0 

13 PQ 1 0 -13.5 -5.8 0 0 0 0 

14 PQ 1 0 -14.9 -5 0 0 0 0 

 

 
Table 8.3 - Branch parameters for the IEEE 14-bus system 

bus i bus j 
branch 

type 

branch 
resistance 

[p.u.] 

branch 
reactance 

[p.u.] 

branch 
susceptance 

[p.u.] 

transformer 
tap 

1 2 0 0.01938 0.05917 0.0528 1 

1 5 0 0.05403 0.22304 0.0492 1 

2 3 0 0.04699 0.19797 0.0438 1 

2 4 0 0.05811 0.17632 0.0374 1 

2 5 0 0.05695 0.17388 0.034 1 

3 4 0 0.06701 0.17103 0.0346 1 

4 5 0 0.01335 0.04211 0.0128 1 

4 7 1 0 0.20912 0 0.978 

4 9 1 0 0.55618 0 0.969 

5 6 1 0 0.25202 0 0.932 

6 11 0 0.09498 0.1989 0 1 

6 12 0 0.12291 0.25581 0 1 

6 13 0 0.06615 0.13027 0 1 

7 8 0 0 0.17615 0 1 

7 9 0 0 0.11001 0 1 

9 10 0 0.03181 0.0845 0 1 

9 14 0 0.12711 0.27038 0 1 

10 11 0 0.08205 0.19207 0 1 

12 13 0 0.22092 0.19988 0 1 

13 14 0 0.17093 0.34802 0 1 

 

 
In Table 8.2, the bus powers are given in absolute quantities, which will be transformed 

subsequently in per-unit values, using a base power of 100 MVA. The initial voltages columns 
contain the initial approximation of the bus voltages and angles. The magnitudes are given in per-
unit values, while the angles are given in radians. 



For the slack bus and PV buses, the initial approximation is the value of the voltage 
imposed at the bus. Also for the PV buses, the limit values of the reactive powers are specified. If 
any of these is violated, the bus will be made a PQ bus and its voltage will change. 

In Table 8.3, all the parameters are given in per-unit values. The branch conductances are 
considered 0. A branch type of 1 denotes a line, for which the ratio is always 1, while a type 0 
branch is a transformer, for which the current tap is given in percent. 

 
In the reference scenario, the Newton-Raphson method converges in 5 iterations, for a 

precision of 0.001. The results are the bus voltages, as magnitude and angle, the power injection 
at the slack bus, and the reactive powers at the PV buses, presented in Table 8.4. Based on these 
quantities, branch power flows, currents and voltage drops and power losses can be computed.  

For the used load pattern, the system needs 235 MW of active power, which will be 
imported through the slack bus, and will have a surplus of 19 MVAr of reactive power, which will 
flow out through the slack bus. Bus 6 is transformed into a PQ bus, its maximum reactive 
generation limit being exceeded in order to keep the voltage level near to 1.07 p.u. The voltages 
in the PQ buses decrease progressively as the buses are more far away from the slack bus. All the 
voltage magnitudes are in the range of +/- 5% tolerance from the rated voltage, which in per-
unit values is 1. The voltage angles are progressively lagging. 

 

 
Table 8.4 – Load flow results - the IEEE 14-bus system 

bus no. 
bus 
type 

bus 
voltage 

magnitude 
[p.u.] 

bus 
voltage 
angle 

[radians] 

bus 
active 
power 
[MW] 

bus 
reactive 
power 
[MVAr] 

max. 
reactive 
power 
limit 

min. 
reactive 
power 
limit 

1 slack 1.06 0 234.8447 -18.7697 0 0 

2 PV 1.045 -0.101 18.3 36.74956 50 -40 

3 PV 1.01 -0.259 -94.2 12.28612 40 0 

4 PQ 1.011 -0.208 -47.8 3.9 0 0 

5 PQ 1.014 -0.178 -7.6 -1.6 0 0 

6 PQ 1.069 -0.293 -11.2 24.0005 24 -6 

7 PQ 1.046 -0.269 -1.1E-06 1.65E-07 0 0 

8 PV 1.09 -0.269 1.67E-14 23.49243 24 -6 

9 PQ 1.027 -0.301 -29.5 -16.6 0 0 

10 PQ 1.026 -0.305 -9 -5.8 0 0 

11 PQ 1.043 -0.301 -3.5 -1.8 0 0 

12 PQ 1.050 -0.310 -6.1 -1.6 0 0 

13 PQ 1.043 -0.311 -13.5 -5.8 0 0 

14 PQ 1.013 -0.326 -14.9 -5 0 0 

 

 

 

 
The next step is to disconnect the line scheduled for maintenance. An important line in 

the system is chosen, namely the line linking buses 1 and 2, which is one of the two lines 
connected to the slack bus, through which the entire system is supplied. 

Running again the algorithm, with the bus loads from Table 8.2, the load flow does not 
converge. After 100 iterations, the results of the algorithm are the ones presented in Table 8.5. 
This means that, for the given load profile, it is not possible to keep the system running if the 
chosen line is disconnected. 

 

 



Table 8.5 – Load flow results - the IEEE 14-bus system with line 1-2 disconnected 

bus no. 
bus 
type 

bus 
voltage 

magnitude 
[p.u.] 

bus 
voltage 
angle 

[radians] 

bus 
active 
power 
[MW] 

bus 
reactive 
power 
[MVAr] 

max. 
reactive 
power 
limit 

min. 
reactive 
power 
limit 

1 slack 1.06 0 -19.787 2.843 0 0 

2 PQ -0.066 0 0.425 1.657 50 -40 

3 PV 0.115 0 0.003 0.134 40 0 

4 PQ 0.029 0 2.954 -0.628 0 0 

5 PQ 5.185 0 276.983 886.080 0 0 

6 PQ 3.837 0 46.793 285.354 24 -6 

7 PQ -2.186 0.97 0.000 0.000 0 0 

8 PQ 12.46 1.105 0.000 767.506 24 -6 

9 PQ -0.066 0 -0.019 0.108 0 0 

10 PQ -0.025 0 0.019 0.005 0 0 

11 PQ -0.002 0 -0.027 -0.026 0 0 

12 PQ 0.005 0 -0.061 -0.016 0 0 

13 PQ -0.000 0 0.008 0.005 0 0 

14 PQ 0.120 0 0.051 0.054 0 0 

 

 

 

 
In this case, the dispatcher must make a choice. Generally, some available choices would 

be: 

 To supply bus 2 from a different source 

 To reduce the load in the system by disconnecting important consumers. 

 To reschedule the maintenance to a time when the load profile in the system allows it to 
be supplied only through line 1-3. 
 
Solution 1: Changing the configuration of the system so that bus 2 is supplied from an 

alternative source. 
Analyzing the one-line diagram, it can be seen that no alternative supply source exists. 
 
Solution 2: Disconnect loads from the system. 
Analyzing the load profile from Table 8.2, bus 3 has the highest load, which is over a 

third of the system’s entire imported power. 
The load and generation from the bus are zeroed, the bus is transformed into a PQ-type 

bus and the load flow is executed again. The results are given in Table 8.6. This time, bus 3 is 
changed into a PQ bus, but the algorithm converges in 3 iterations, which means that 
disconnecting the load in bus 3 makes the maintenance of the 1-2 line possible. 

 

 

 

 

 

 

 

 

 

 



 

Table 8.6 – Load flow results - the IEEE 14-bus system with line 1-2 disconnected 

and the load from bus 3 zeroed 

bus no. 
bus 
type 

bus 
voltage 

magnitude 
[p.u.] 

bus 
voltage 
angle 

[radians] 

bus 
active 
power 
[MW] 

bus 
reactive 
power 
[MVAr] 

max. 
reactive 
power 
limit 

min. 
reactive 
power 
limit 

1 slack 1.060 0.000 137.384 5.748 0 0 

2 PV 1.045 0.000 18.300 25.854 50 -40 

3 PQ 1.034 0.000 0.000 0.000 40 0 

4 PQ 1.015 0.000 -47.800 3.900 0 0 

5 PQ 1.013 0.000 -7.600 -1.600 0 0 

6 PV 1.070 0.000 -11.200 17.034 24 -6 

7 PQ 1.048 0.000 0.000 0.000 0 0 

8 PQ 1.090 0.000 0.000 22.660 24 -6 

9 PQ 1.029 0.000 -29.500 -16.600 0 0 

10 PQ 1.027 0.000 -9.000 -5.800 0 0 

11 PQ 1.044 0.000 -3.500 -1.800 0 0 

12 PQ 1.051 0.000 -6.100 -1.600 0 0 

13 PQ 1.044 0.000 -13.500 -5.800 0 0 

14 PQ 1.014 0.000 -14.900 -5.000 0 0 

 

 
Solution 3: Rescheduling the maintenance to a time when the system is less loaded. 
If the consumer from bus 3 cannot be disconnected, another solution is to reschedule the 

maintenance during the night, valley hours, when the load is at its minimum. For this, the loads 
and generations from all buses are reduced to 60% from the previous values, with the bus 3 
connected again, and the load flow is executed, with the new bus loads. The algorithm converges 
in 4 iterations, which means that with the new bus loads, the maintenance of line 1-2 is possible 
without jeopardizing the system’s safety. The results are presented in Table 8.7. 

 

 
Table 8.7 – Load flow results - the IEEE 14-bus system with line 1-2 disconnected 

and loads and generations reduced by 40% 

bus no. 
bus 
type 

bus 
voltage 

magnitude 
[p.u.] 

bus 
voltage 
angle 

[radians] 

bus 
 active 
power 
[MW] 

bus 
reactive 
power 
[MVAr] 

max. 
reactive 
power 
limit 

min. 
reactive 
power 
limit 

1 slack 1.060 0.000 146.360 4.996 0 0 

2 PV 1.045 0.000 10.980 37.916 50 -40 

3 PV 1.010 0.000 -56.520 -4.521 40 0 

4 PQ 1.019 0.000 -28.680 2.340 0 0 

5 PQ 1.017 0.000 -4.560 -0.960 0 0 

6 PV 1.070 0.000 -6.720 4.563 24 -6 

7 PQ 1.057 0.000 0.000 0.000 0 0 

8 PQ 1.090 0.000 0.000 17.902 24 -6 

9 PQ 1.044 0.000 -17.700 -9.960 0 0 

10 PQ 1.043 0.000 -5.400 -3.480 0 0 

11 PQ 1.054 0.000 -2.100 -1.080 0 0 

12 PQ 1.059 0.000 -3.660 -0.960 0 0 

13 PQ 1.054 0.000 -8.100 -3.480 0 0 

14 PQ 1.036 0.000 -8.940 -3.000 0 0 
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