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11.1. Overview 
Running a load flow algorithm requires a large quantity of data. Besides the general 

data, regarding the system’s topology and branch electrical parameters, all active and reactive 
power injections from PQ buses, all bus active powers and voltage magnitudes and the slack 
bus voltage magnitude and angle must be provided.  

For system management and control, in scenarios where accurate real time data is 
required (accidental bottleneck and contingency analysis, for instance), obtaining and 
processing such amount of data is not always possible. In these cases, other analysis 
algorithms are required, which can use less input data, but, at the same time, compute the 
load flow variables with enough accuracy. 

Such algorithms are the static state estimation (SSE) algorithms, which, based only 
on limited data, taken from key points in the system, and knowing the network’s structure, 
branch electrical data and current operating configuration, can compute an approximation of 
the system’s current state, expressed as bus voltages and branch load flows. The process is 
called state estimation. 

A state estimation algorithm computes a set of state variables which usually are the 
bus voltage, in magnitude and angle, which are subsequently used to find the other variables 
of a load flow calculation: branch power flows, active power losses, transformer loadings etc. 

 
SSE algorithm use as inputs values measured directly from the system, called 

measurements. This feature makes them the primary tool in assessing the system’s state in 
real time, where load flow calculations are needed in intervals of minutes. The types of 
measurements used by classic SSE algorithms are: 

 bus active and reactive powers; 

 branch active and reactive power flows; 

 bus voltage magnitudes. 
 

These are complemented by pseudo-measurements, which are values taken not from 
real time measured data, but are known in advance, such as: 
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 the voltage magnitude set in a PV bus; 

 the null active and reactive power injections form transfer buses; 

 forecasted values. 
 
Measurements can be affected by errors. Some error sources are: 

 a lower precision class of the metering equipments; 

 metering equipment malfunctions and incorrect telemetry reading from the 
switches in the system; 

 errors generated by equivalent electrical models of the real elements; 

 lack of synchronism between measurements. 
 
The latter is the reason why classic SSE algorithms do not use as measurements bus 

voltage angles. On one hand, the SCADA/EMS systems provide values at a interval of 
seconds, too slow for the variation speed of the voltage sinusoidal wave. On the other hand, 
these measurements cannot be synchronized accurately enough, and using of phase 

measurements can lead to poorly estimated results. 

 
11.2. The observability concept 
A system is considered observable if, based on the given set of measurements, all its 

state variables can be computed. Otherwise, the system is called unobservable. 
A system can be unobservable because of: 

 an insufficient number of measurements; 

 incorrect placement of measurements; 

 use of a poor estimation algorithm. 
 
A way of ensuring observability is to use a sufficient number of measurements 

(measurements redundancy), and one of the functions of the state estimation algorithm is to 
detect and remove bad measurements. 

Two types of observability are defined: 

 numeric observability, which describes the possibility of solving the equations 
system which defines the SSE model; 

 topological observability, which describes the possibility to build a complete tree 
of measurements for the analyzed system. In this tree, all the buses from the 
system are connected to branches to which computed or measured current flows 
are associated.  

The numeric observability guarantees the topological observability. The reverse 
statement is not necessarily true. 

 

 
11.3. The general mathematical model of the state estimation 
If m is the number of measurements 
zi   –    the measured value i; 
hi – non-linear function of variable xi; 
εi  –    the error of the measurement i; 

 

then the state estimation model with the unknowns xk, 12...1  nk  is written as: 



Monitoring and Management of Electrical Systems - C11 

 

3 

 

  mixxxhz inii ..1.....,, 1221                                           (11.1) 

 
or, in matrix form: 
 

   ][])([ exhz                                                                    (11.2) 

where:  

 [z] – vector of measured values; 

  [x] –   vector of state variables; 

 h([x]) - a known non-linear function h:R
n
xR

m
 which relates measurements to state 

variables; 

 e  –  error vector [Alexandrescu 97]. 
The state estimation consists of computing the approximate values of the state 

variables (the magnitudes and angles of the bus voltages). 
 
The complete set of modules of a state estimator is [Gavrilaş 08]: 

 The network topology processing module, which reads the closed/open states of 
all circuit breakers and switches and gives the real working configuration of the 
analyzed system; 

 The observability analyzer, which assesses if the given measurements set is 
sufficient for computing the system’s state; 

 The state estimator, which computes the best estimation of the state variables 
(bus voltage magnitudes and angles), using the available set of measurements and 
network data. The state variables are used subsequently to estimate the other load 
flow variables, such as the loading levels of the system elements; 

 The bad data processing module, which finds the heavily erroneous 
measurements which could affect the precision of the estimated results. 

 The system parameters and structure processing module, which estimates the 
general parameters of the system: line and compensation parameters, structural 
errors in the system’s configuration. 

 
 
The most known state estimation algorithms are: 

 The Weighted-Least-Square (WLS) Algorithm [Schweppe 70.1] 

 The Least absolute Value (LAV)  algorithm [Abur 93], [Singh et.al. 97] 

 The approximate state estimation model [Schweppe,70.2] 

 The Levenberg-Marquardt algorithm [Rao 80] 

 The Hachtel method [Gjelsvik et. al. 85] 

 The orthogonal factorization method [Pajic 07] 
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11.4.The WLS Algorithm 
The most known SSE algorithm is the weighted least squares (WLS) method, which 

computes the state variables so that the weighted sum of square deviations between the 
measured and the computed values for the measurements to be minimized. If the 

measurements set described by (11.1), [z], is:  
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with 

])]([...])([])([[ 21 xhxhxhh m

T   

 
where: 

hi([x]) - a non-linear function which computes the measurement i based on the state 

variables vector [x]; 

]...[ 21 n

T xxxx   is the state vector; 

]...[ 21 m

T eeee    vector of Gaussian random measurement errors, with normal 

distribution. 
 
The WLS estimation seeks to minimize the goal function: 

 

   ])([][])([][]))([(])([
1

2 xhzWxhzwxhzxJ
T

m

i

iii 


  (11.4) 

 

where W is a diagonal matrix where the diagonal elements are the wi weights associated to 

each zi measurement, to express the „confidence ” in the value of that measurement. If the 
weight is 0, then the measurement is not used or present. A high weight value signifies that 
the measurement is believed to be trustworthy. 

The best estimation for the vector [x] is obtained when the weights matrix W is the 

inverse measurement error covariance matrix, when the m measurements are considered as 
independent: 

 

)...,,,()][]([])([ 22

2

2

1 m

T diageeEeCovR     (11.5) 

 

where 2

i is the error variance of the measurement i and E([e]) is the average value of errors 

[e]. (11.4) becomes: 
 

   ])([][])([][]))([(])([ 1

1

2 xhzRxhzRxhzxJ
T

m

i

iiii  



   (11.6) 
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(11.6) is minimized through simultaneous linearization of its derivatives in point [x]: 
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 (11.7) is solved in an iterative process, by applying successive corrections [Δx]
k
  to 

the current approximation [x]
k of the solution: 

 
kk xxx ][][][        (11.8) 

 

If the current approximation is near the solution, i.e. the Δxi corrections are small 
enough, the Taylor expansions of the measurement function near the current approximation, 
discarding its non-linear part, can be written: 

 
kkkkk xxHxhxxhxh ][)]([)]([)][]([])([     (11.9) 

 

where )]([ kxH is the Jacobian matrix of the measurement functions, computed in the same 

way as for the Newton-Raphson method.  
 

With this approximation, the deviation between the [z] measurements and the h([x])  
computed values is: 

 
kkk xxHxhzxhz ][)]([)]([][])([][     (11.10) 

 
If the deviation of the computed values from the measurements is denoted 

kzhz ][)([x]][
not

k  ,  (11.7) is rewritten as: 

 

  0][)]([][)]([ 1   kkkkT xxHzRxH    (11.11) 

or 
 

kkTkkkT zRxHxxHRxH ][)]([][)]([)]([ 11     (11.12) 

 

If )]([)]([)]([ 1 k
not

kkT xGxHRxH   is the gain matrix for the [x]
k  approximation,  

(11.12) is written as: 
 

kkTkk zRxHxxG ][)]([][)]([ 1      (11.13) 

 

(11.13) will give the [Δx]
k corrections, which, applied to the [x]

k
 current approximation, will 

lead to a new approximation of the solution: 
 



Monitoring and Management of Electrical Systems - C11 

 

6 

 

kkk xxx ][][][ 1       (11.14) 

 
The iterative process described by these expressions is repeated until a stopping 

criterion is met, for instance  kxMax ][ . 

 
11.5 Example 
State estimation with the WLS algorithm on the IEEE 14 bus test system 
This example demonstrates several scenarios in which the WLS state estimator is 

applied to the IEEE 14 bus system [web pstca], modeled in the Power Education Toolbox 
software [web PET]. 

The estimator uses precise values for the measurements, taken from a load flow 
calculation. 

 
Measurements are represented as follows: 

 

 
- active / reactive bus power injection measurement 

 
 - bus voltage magnitude measurement 

 

- branch active/ reactive power flow measurement 

 

 

 
A. The unobservable system 
In Fig. 11.1, there are not enough measurements to ensure the system’s observability. 

The branches coloured in red are in the unobservable area. The problem is solved by adding 
measurements in the unobservable area. 

 
 
B. Observable system, precise measurements 
After the system is made observable, the WLS algorithm computes the state variables, 

bus voltage magnitudes and angle (Fig. 11.2). A quick comparison with the load flow results 
shows that, for the given number and placement of measurements, the results, while not 
being exact, are accurate enough (Case A). Using more measurements, the precision of the 
estimation improves and the algorithm gives better results, compared to the exact load flow 
estimation. The measurement list and estimation results are presented in Tables 11.1 and 
11.2. 
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Fig. 11.1- An unobservable system 

 

 

 

 

 

 
 

Fig. 11.2 - An observable system 
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Table 11.1 – WLS estimation results vs. load flow results 

Bus 

load flow  

WLS estimation, low 

number of 

measurements 

WLS estimation, high 

number of 

measurements 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

1 1.06 0  1.061 0 1.06 0 

2 1.045 -4.98  1.046 -4.97 1.045 -4.98 

3 1.01 -12.72  1.01 -12.71 1.01 -12.71 

4 1.019 -10.32  1.019 -10.32 1.019 -10.32 

5 1.02 -8.78  1.021 -8.78 1.02 -8.78 

6 1.07 -14.22  1.071 -14.21 1.07 -14.22 

7 1.062 -13.37  1.062 -13.38 1.06 -13.37 

8 1.09 -13.37  1.09 -13.37 1.09 -13.37 

9 1.056 -14.95  1.056 -14.96 1.056 -14.95 

10 1.051 -15.10  1.051 -15.11 1.051 -15.11 

11 1.057 -14.79  1.058 -14.79 1.057 -14.79 

12 1.055 -15.08  1.056 1.051 1.055 -15.08 

13 1.051 -15.16  1.051 -15.15 1.05 -15.16 

14 1.036 -16.04  1.036 -16.04 1.036 -16.05 

 

 

 

 
Table 11.2 - Measurement list for the IEEE 14 bus system 

 Case A – low  number of 
measurements 

Case B – high number of 
measurements 

Bus voltages B1 B1 

Bus powers B1, B3, B8, B10, B12 B1, B2, B3, B7, B8, B10, B11, 
B12 

Branch power flows: B2-B3, B5-B2, B5-B6, B4-B9, B7-
B9, B11-B6, B6-B13, B13-B14 

B1-B2, B2-B3, B3-B4, B4-B2, 
B5-B2, B5-B4, B5-B6, B4-B9, 
B7-B9, B7-B8, B11-B6, B6-B13, 
B12-B13, B13-B14 

 

 
C. Influence of bad measurements and measurement redundancy 
For both cases, with low and high number of measurements, a malfunction of the 

measuring device for the branch power flow B2-B3 is considered. Instead of providing the 
actual flow measurement of P=73.18 MW and Q=3,56 MVAr, the measured values will be 0 
and 0, and these values will be used by the WLS algorithm. In the first case, where the 
redundancy of measurements is low, reducing the weight of the bad measurement does not 
restore the precision of the algorithm and bad measurements affects heavily the results 
mostly in the area surrounding the bad measurement (Table 11.3). 

 



Monitoring and Management of Electrical Systems - C11 

 

9 

 

 

 
Table 11.3 – WLS estimation results with bad measurement, the case with low number of measurements 

Bus 

WLS estimation  

WLS estimation, 

high measurement error/ 

high weight in bus 3 

WLS estimation, 

high measurement error/ 

low weight in bus 3 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

1 1.061 0  1.06 0 1.06 0 

2 1.046 -4.97  1.045 -4.98 1.046 -4.97 

3 1.01 -12.71  1.04 -4.92 0.892 -10.11 

4 1.019 -10.32  1.095 -3.58 0.812 -1.53 

5 1.021 -8.78  1.02 -8.79 1.021 -8.78 

6 1.071 -14.21  1.07 3.58 1.071 -14.21 

7 1.062 -13.38  1.14 0.94 0.854 -6.34 

8 1.09 -13.37  1.166 0.95 0.888 -6.34 

9 1.056 -14.96  1.134 -0.43 0.847 -8.79 

10 1.051 -15.11  1.101 -4.78 0.904 -11.04 

11 1.058 -14.79  1.057 -14.82 1.058 -14.79 

12 1.056 -15.05  1.055 -15.09 1.056 -15.07 

13 1.051 -15.15  1.05 -15.18 1.051 -15.15 

14 1.036 -16.04  1.035 -16.07 1.036 -16.04 

 
 

Table 11.4 – WLS estimation results with bad measurement, the case with high number of measurements 

Bus 

WLS estimation  

WLS estimation, 

high measurement error/ 

high weight in bus 3 

WLS estimation, 

high measurement error/ 

low weight in bus 3 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

Bus 

voltage 

magnitude 

[p.u.] 

Bus 

voltage 

angle 

[degrees] 

1 1.06 0  1.053 0 1.061 0 

2 1.045 -4.98  1.039 -4.94 1.046 -4.97 

3 1.01 -12.71  1.009 -11.57 1.011 -12.7 

4 1.019 -10.32  1.013 -10.14 1.019 -10.31 

5 1.02 -8.78  1.014 -8.67 1.021 -8.77 

6 1.07 -14.22  1.064 -14.17 1.071 -14.21 

7 1.06 -13.37  1.056 -13.24 1.062 -13.35 

8 1.09 -13.37  1.084 -13.24 1.09 -13.35 

9 1.056 -14.95  1.05 -14.84 1.057 -14.93 

10 1.051 -15.11  1.045 -15.01 1.052 -15.09 

11 1.057 -14.79  1.051 -14.73 1.058 -14.78 

12 1.055 -15.08  1.049 -15.03 1.056 -15.07 

13 1.05 -15.16  1.044 -15.12 1.051 -15.15 

14 1.036 -16.05  1.029 -15.98 1.036 -16.02 
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In the second case, where the redundancy of measurements is high reducing the 
weight of the bad measurement does restore the precision of the algorithm. The use of bad 
measurement affects the results for the entire system, but, because of the presence of more 
good measurements, its effect is not so heavy as in the first case. Reducing the weight of the 
bas measurement restores the precision of the algorithm (Table 11.4). 
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